The product rule is a fundamental concept in calculus used to find the derivative of a product of two or more functions.
Formula:
If you have two functions, u(x) and v(x), the derivative of their product, y = u(x)v(x), is given by:
dy/dx = u'(x)v(x) + u(x)v'(x)
Where u'(x) and v'(x) represent the derivatives of u(x) and v(x) respectively.
In simpler terms:
(First function derivative * Second function) + (First function * Second function derivative)
Generalization:
The product rule can be extended to more than two functions. For example, if y = u(x)v(x)w(x), then:
dy/dx = u'(x)v(x)w(x) + u(x)v'(x)w(x) + u(x)v(x)w'(x)
When to Use:
Use the product rule whenever you need to find the derivative of a function that is expressed as the product of two or more distinct functions. For example, when differentiating x*sin(x) or (x^2 + 1)*e^x.
Example:
Let y = x^2 * sin(x)
Then:
Applying the product rule:
dy/dx = (2x * sin(x)) + (x^2 * cos(x))
Importance:
The product rule is essential for differentiating a wide range of functions and is a building block for more advanced differentiation techniques like the quotient%20rule and chain%20rule.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page